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Abstract- If one wants to know whether convection heat transfer in a system can be considered to be in the forced, in the free, or in the 

mixed convection regime, one has to know about the boundaries and transition for every type of flow. In this paper, few studies have 

been presented to understand the procedure for analysis of finding the boundaries and transition for mixed convection heat transfer. 

Correlation and empirical relations for finding heat transfer (Nusselt number), friction factor for different orientation of different 

geometries which are found out by different authors from experimental studies or analytical/numerical studies. This paper shows this 

analysis of mixed convection correlation for some structures for different orientation.  

NOMENCLATURE 

𝜂 Non dimensionalised r co-ordinate  

𝜌𝑜 , 𝜌𝑤 Reference density/density of the fluid at wall temperature (kg/m3) 

𝛽 Co-efficient of thermal expansion of the working fluid (K-1) 

𝜃 Non-dimensionalised temperature in vertical channel flow 

𝜙 Non-dimensionalised temperature in semicircular duct flow 

𝑇𝑜 Reference temperature in vertical channel flow (K) 

𝑇𝑤 Wall temperature of the semicircular duct (K) 

𝑊𝑚 Mean non dimensional velocity in the axial direction 

𝑤𝑚 Mean velocity in the axial direction (m/s) 

𝐷 Hydraulic diameter (m) 

𝐿 Transverse dimension of the vertical channel & Length of the fin (m) 

𝐴 Axial pressure gradient (kg/s2-m2) 

𝑈𝑜 Reference velocity in vertical channel (m/s) 

𝐺𝑟 Grashof Number (𝐺𝑟 =
𝑔𝛽Δ𝑇𝐷3

𝜈2 )  

𝑃𝑟 Prandtl Number (𝑃𝑟 =
𝜈

𝛼
)  

𝐵𝑟 Brinkman Number (𝐵𝑟 =
𝜇𝑈𝑂

2

𝑘Δ𝑇
) 

Ξ Gr/Re 

𝑅𝑇  Temperature difference ratio (𝑅𝑇 =
𝑇2− 𝑇1

∆𝑇
)  

𝜀 ΞBr 
  Gz Graetz number 

Ra Rayleigh Number (Gr.Pr) 

𝑄′′ Axial heat flux per unit length (kg/m-s2) 

𝑅 Radius of the semicurcular duct (m) 

Re Reynolds number 

Ri Richardson number(
𝐺𝑟

𝑅𝑒2) 

Nu Nusselt number 

Gz Gratz number 

Cf Local friction factor 

Ω Buoyancy parameter(|Gr|/Re2 

𝜇 Viscosity 

 

        Subscripts: 

b   Bulk means condition 

w  Wall condition 

f  Mean film condition 
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I. INTRODUCTION 

If along with force flow situation if buoyant forces also develop due to density difference caused by temperature difference, the situation 
is termed as mixed convection heat transfer. The main problem is to identify the boundaries to differentiate between the different type 

of heat transfer regimes. The limit, up to which we can say that this is purely forced conduction and neglect the free or natural convection. 

Same for the limit of natural convection alone and neglecting the forced convection effect. In between those two extremes a situation 

may arise where the effect of both types are significant and equal. Outside these boundaries, the normal types of correlations may be 

expected to apply. In a mixed convection, both free convection and forced convection participate in the heat transfer process Free 

convection is negligible if, 𝐺𝑟/𝑅𝑒𝐿 ≪1 and forced convection is negligible if, 𝐺𝑟/𝑅𝑒𝐿 ≫ 1. Mixed convection regime is significant at 

the time of 𝐺𝑟/𝑅𝑒𝐿 ≈ 1. The force fluid flow direction can be a constraint, the relative buoyancy force and force flow direction. Three 

possible relative directions are possible buoyancy force and flow direction have the same direction (assistive or aiding flow), if it is 

opposite direction (opposing flow) and if the relative direction is perpendicular the this is termed as transverse flow. An example of 

upward flow is force flow in vertical plate in the same direction of buoyancy force (assistive flow) and opposite is opposing flow. Flow 
over a horizontal plate, cylinder and sphere are the examples of transverse flows. In assisting and transverse flows, buoyancy acts to 

enhance the rate of heat transfer associated with pure forced convection; in opposing flows, it acts to decrease this rate. The mixed 

convection can be correlated through a simple expression of the form, 

 𝑁𝑢𝑛 = 𝑁𝑢𝑓
𝑛 ± 𝑁𝑢𝑁

𝑛   (1) 

For finding the correlation for Nusselt number for different geometries, some experimental correlations are used. The plus sign signifies 

the assistive or transverse and minus sign signifies the opposing flow. “The best correlation of data is often obtained for n =3, although 

values of 7/2 and 4 may be better suited for transverse flows involving horizontal plates and cylinders (or spheres), respectively. Equation 

(1) is the first approximation equation and for the general use. If some serious problem arises like in industry then one should go for 

experimentally verified correlations for different geometries (Incropera, 2011)[1].  

 One wants to know when heat transfer can be considered to be in the forced, in the free, or in the mixed convection regime. 

For knowing the boundaries between forced, mixed and natural convection first one has to understand about the pure free and force 

convection and Nusselt number empirical relationship for those. For the fluid flowing in the laminar region pure forced convection fluid 

with Pr=0.7 and constant heat flux. 
 

 
𝑁𝑢 = 4.36 +

{0.036(𝑅𝑒)(𝑃𝑟)(𝐷/𝐿)}

{1 + 0.0011(𝑅𝑒)(𝑃𝑟)(𝐷/𝐿)}
 

(2) 

   

Meets with exact theoretical solution within ±3% for 10≤ 𝑅𝑒. Pr (𝐷/𝐿) ≤ 1000. 

Free convection laminar flow  

 

 𝑁𝑢 = 𝐶(Gr)𝑚(Pr)𝑛 (3) 

Recommended value for C is 0.39. 

For turbulent fully developed flow 

 𝑁𝑢 = 0.022(GRe)0.80.42 (4) 

Where Pr is not too far from unity. 

For external (Laminar & turbulent flow) including flat and vertical cylinders 

 𝑁𝑢 = 0.11(GrPr)1/3 + (GrPr)1/0.1 (5) 

boundaries between free and forced convection can be identified if one assumes same order of magnitude for both type of flows. 
 𝑁𝑢 = 0.022(GRe)0.80.42 = 0.13(𝐺𝑟𝐷 𝑃𝑟)1/3 (6) 

After manipulation equation obtained is 

 𝑅𝑒 = 9.2(𝐺𝑟𝐷)0.417(𝑃𝑟)−.108 (7) 

If on logarithmic limit 100% of this straight line is followed  then it separates the boundaries [2]. 

If the boundaries of free and forced convection are known, then one can move forward for finding the Nusselt number and finally the 

heat transfer for different structures and different orientation and relative fluid flow for some specific application. Here, in this paper 

different types of structures have been shown. At the first, a general analysis scheme is first described using a simple case of flow 

through a vertical duct with constant duct wall temperatures. In the next section, a particular case of interest is dealt with in which 

viscous dissipation is neglected. This assumption becomes reasonable in a case like a heat transfer from a fin, in which the viscous heat 

dissipation is negligible when compared to the heat convected from the surface of the fin. Such a case of transfer through a semicircular 

finned surface for a prescribed value of heat flux and uniform wall temperature is examined. The second case which has been discussed 

in this paper is for mixed convection in a finned circular duct. The third case which has been discussed in this paper is for mixed 

convection through a sphere. In many situations analytical and empirical relations are fine to use but sometimes for experimental 
procedure is necessary to find it. Some of the studies presented in this paper are from analytical studies and some from the experiments. 

II. MOTIVATION AND IMPORTANCE OF THE PROBLEM 

Channel mixed convection is particularly important in the analysis of compact heat exchangers, electronic cooling systems, cooling 

cores of nuclear reactors, and chemical process technology. They are commonly studied for the boundary conditions of prescribed wall 
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temperatures and prescribed wall heat fluxes. In a general case of mixed convection, the heat transfer rate, Nusselt number, temperature 

and velocity profiles are functions of buoyance forces, pressure gradient and viscous dissipation. In lot of devices used in industry which 

have force flow along with heated surface, uniform wall temperature closely approximates the industrial process. In electronic cooling 

application like circuit board array mixed heat transfer utilization is really useful. So, our main motivation for this paper is to establish 

a methodology from glean literature for analysis of mixed convection in different structures. It is imperative sometimes to know the 

correlations and empirical relations of mixed convection heat transfer, when it is creating some losses and also when one is trying to get 
advantage out of this.  

III. METHODOLOGY USED 

VERTICAL CHANNEL MIXED CONVECTION[3]- 

The following assumptions are made in the study of mixed convection a vertical channel. The flow model is simplified to arrive at an 

analytical solution. 

1. The Fluid is Newtonian with properties like thermal conductivity, thermal diffusivity, dynamic viscosity and thermal expansion 

coefficient assumed as constants. 

2. The Boussinesq approximation (𝜌 = 𝜌𝑜[1 − 𝛽(𝑇 − 𝑇𝑂)]) holds good. 
3. The channel is aligned along the X-axis and confined between the spatial y-coordinates -L/2 and +L/2. The wall at y=-L/2 is 

taken as the cool wall at Temperature (T1) and the wall at y=+L/2 is as the hot wall at Temperature (T2) in case of asymmetric 

heating. In the case of symmetric heating, both the wall temperatures are taken to be equal. 

4. The flow is 2-D, steady, fully developed and laminar. The only non-zero component of velocity is along the X-axis. Variation 

of flow properties along the X-axis is zero since the flow is fully developed.  

 

Governing Equation and Solution Methodology 

The mass conservation equation can be written as, 
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑈)

𝜕𝑋
+

𝜕(𝜌𝑉)

𝜕𝑌
= 0      ⇒       

𝜕𝑈

𝜕𝑋
= 0 

The mass conservation equation implies that velocity is only a function of Y. Y-momentum conservation simplifies to a simple 

expression of zero pressure gradient in the Y-axis as the velocity component along the axis is zero. Therefore pressure becomes a 

function of X only. 
𝜕𝑃

𝜕𝑋
 is the pressure gradient maintained across the ends of the pipe and can be assumed to be a constant(A). X - 

Momentum conservation equation can be written as, 

𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= 0 =  

−𝜕𝑃

𝜌𝑜𝜕𝑋
+  

𝜇

𝜌𝑜

( 
𝜕2𝑈

𝜕𝑋2
+  

𝜕2𝑈

𝜕𝑌2
 ) +  

𝜌𝑔

𝜌𝑜

  

 
⇒       

−𝐴

𝜌𝑜

+  𝜈 ( 
𝑑2𝑈

𝑑𝑌2
 ) +  𝛽𝑔(𝑇 − 𝑇𝑂) = 0       

 

(8) 

To is the reference temperature and can be taken as the average of the wall temperatures. Similar to velocity, the temperature is only a 

function of Y. This can be verified by differentiating equation (8) with X to obtain an expression for (dT/dx). The energy conservation 

equation can be written as 

𝜌
𝐷ℎ

𝐷𝑡
=

𝐷𝑃

𝐷𝑡
+  𝑘 ( 

𝜕2𝑇

𝜕𝑋2
+ 

𝜕2𝑇

𝜕𝑌2
 ) +  𝜇 [ 2 (

𝜕𝑈

𝜕𝑋
)

2

+  2 (
𝜕𝑉

𝜕𝑌
)

2

+   (
𝜕𝑉

𝜕𝑋
+  

𝜕𝑈

𝜕𝑌
)

2

 ] 

 
⇒       𝛼 ( 

𝜕2𝑇

𝜕𝑌2
 ) +  

𝜈

𝐶𝑃

(
𝜕𝑈

𝜕𝑌
)

2

= 0       
(9) 

Figure 1:  Schematic of the vertical channel 
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Double differentiating equation(1) with respect to Y, yields an expression for  
𝜕2𝑇

𝜕𝑌2 which can be substituted in equation(2) to obtain a 

differential equation for U. 
 𝑑4𝑈

𝑑𝑌4
=  

𝛽𝑔

𝛼𝐶𝑃

(
𝑑𝑈

𝑑𝑌
)

2

       

 

(10) 

 
The following parameters are defined for simplifying further analysis. 

1. Hydraulic diameter, D = 2L 

2. ∆𝑇 =  𝑇2 −  𝑇1  for asymmetric heating and ∆𝑇 =
𝜈2

𝐶𝑃𝐷2 for symmetric heating. 

3. Reference velocity, 𝑈𝑜 =  
−48𝐴𝐷2

48𝜇
  

The equation set and the boundary conditions can be non dimensionalised using the following dimensionless quantities,  

𝑢 =
𝑈

𝑈𝑂
 , 𝑦 =

𝑌

𝐷
 , 𝜃 =

𝑇−𝑇𝑂

∆𝑇
, 𝐺𝑟 =

𝑔𝛽Δ𝑇𝐷3

𝜈2 , 𝑅𝑒 =
𝑈𝑜𝐷

𝜈
, 𝑃𝑟 =

𝜈

𝛼
 , 𝐵𝑟 =

𝜇𝑈𝑂
2

𝑘Δ𝑇
, Ξ =

𝐺𝑟

𝑅𝑒
, 𝑅𝑇 =

𝑇2− 𝑇1

∆𝑇
 

Equation (10) requires 4 boundary conditions for a particular solution. The no-slip boundary conditions can be invoked on the walls of 
the channel. Other boundary conditions can be obtained by evaluating equation (8) at the wall boundaries using the wall temperatures. 

The non dimensionalised form of the equation (10) along with its boundary conditions can be written as, 

 𝑑4𝑢

𝑑𝑦4
= ΞBr (

𝑑𝑢

𝑑𝑦
)

2

       
(11) 

 
𝑢 (−

1

4
) = 𝑢 (+

1

4
) = 0       

(12) 

 

 𝑑2𝑢

𝑑𝑦2
𝑦=−1/4

= −48 +  
Ξ𝑅𝑇

2
; 

𝑑2𝑢

𝑑𝑦2
𝑦=+

1

4

= −48 − 
Ξ𝑅𝑇

2
       

 

(13) 

The equation sets and the boundary conditions prove that the velocity profile is a function of the ratio of Grashof number to Reynolds 

number (Ξ), Brinkman number (Br) and Temperature difference ratio (RT).  

The solution can be obtained by using the perturbation method in which the variable of interest is expressed in terms of the perturbation 

series of a dimensionless parameter. The dimensionless parameter is chosen based on the coefficient in the non dimensionalised 

differential equation. Therefore u(y) can be expressed in terms of 𝜀 = 𝐵𝑟Ξ as,   

 𝑢(𝑦) = 𝑢𝑜(𝑦) + 𝑢1(𝑦)𝜀 +  𝑢2(𝑦)𝜀2 +  𝑢3(𝑦)𝜀3 + ⋯ 𝑢𝑛(𝑦)𝜀𝑛       (14) 

The expression for u(y) is substituted back in equation(4) and the coefficients of each power of 𝜀 are equated to zero to find the unknown 

functions ( uo(y), u1(y),….). Once the velocity field is obtained, the temperature field can be found out by non-dimensionalising equation 

(8) and then simplifying for θ. Further simplification can be made by substituting for u(y) from equation (14) 

 
𝜃 = −

1

Ξ
(48 +

𝑑2𝑢

𝑑𝑦2
) = 2𝑅𝑇𝑦 −  

1

Ξ
∑

𝑑2𝑢𝑛(𝑦)

𝑑𝑦2
𝜀𝑛

∞

𝑛=1

  
(15) 

Nusselt number can be defined at boundaries as the gradient of non-dimensionalised temperature. Thus Nusselt number at the boundaries 

can be expressed in terms of u(y) 

 
𝑁𝑢− = (

𝑑𝜃

𝑑𝑦
)

𝑦=−
1

4

=  2𝑅𝑇 − 
1

Ξ
∑ (

𝑑3𝑢𝑛(𝑦)

𝑑𝑦3
)

𝑦=−
1

4

𝜀𝑛

∞

𝑛=1

   
(16) 

 
𝑁𝑢+ = (

𝑑𝜃

𝑑𝑦
)

𝑦=+
1

4

=  2𝑅𝑇 −  
1

Ξ
∑ (

𝑑3𝑢𝑛(𝑦)

𝑑𝑦3
)

𝑦=+
1

4

𝜀𝑛

∞

𝑛=1

 
(17) 

 

MIXED CONVECTION IN A FINNED SEMI CIRCULAR DUCT[4]- 

The following assumptions are made in the study of finned semi-circular ducts. 

1. The flow is developed and laminar throughout the length of the duct. The velocity field is non-zero only along the axial 

direction. The flow is upward in such a way that buoyance force is in the direction of the main flow and the Boussinesq 

approximation (𝜌 = 𝜌𝑤[1 − 𝛽(𝑇 − 𝑇𝑤)]) holds good. (𝜌𝑤 is the density of the fluid at wall temperature of 𝑇𝑤) 

2. The wall of the duct is assumed to have a constant axial heat flux per unit length (𝑄′′). The duct and the fins walls are assumed 

to be highly conductive so that the temperature profile is uniform across any cross-section. 



Indian Institute of Technology                                                                                                                                                       5 

Kanpur 

3. The Fluid is Newtonian with properties like thermal conductivity, thermal diffusivity, dynamic viscosity and thermal expansion 

coefficient assumed constant. 

4. Viscous dissipation and compression work terms are neglected in the energy equation. 

5. The fins are evenly spaced around the inner circumference of the semicircular duct of radius R. The thickness of the fin is 

negligible and its length is l. The cross-section of the duct is shown in figure (2). 

Governing Equations and the Solution Methodology 

The mass conservation equation simplifies to 
𝜕(𝜌𝑤)

𝜕𝑧
= 0. The momentum conservation equation is only written along the axial direction. 

In the radial and tangential directions, the gradients are zero because the velocity components are zero.  

 
−𝜌𝑤[1 − 𝛽(𝑇 − 𝑇𝑤)]𝑔 −

𝑑𝑝

𝑑𝑧
+ 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑤

𝜕𝜃2
]  = 0    

(18) 

The energy equation can be simplified as, 

 
𝜌𝑤[1 − 𝛽(𝑇 − 𝑇𝑤)]𝐶𝑃𝑤

𝜕𝑇

𝜕𝑧
= 𝑘 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) +  

1

𝑟2

𝜕2𝑇

𝜕𝜃2
]  

(19) 

The equation set can be non-dimensionalised using the following variables. 

𝜂 =
𝑟

𝑅
,  𝑊 =

𝜇𝑤

−𝑅2[(𝑑𝑝 𝑑𝑧⁄ )+𝜌𝑤𝑔]
, 𝜙 =  

𝜋

2
(

𝑇−𝑇𝑊

(𝑄′′ 𝑘⁄ )
) 𝑊𝑚,  𝑅𝑎 = 𝐺𝑟. 𝑝𝑟 =  𝜌𝑤𝑔𝛽𝑅4 (

𝑑𝑇𝑏

𝑑𝑧
) /(𝛼𝜇) 

The governing equations reduce to, 

 1

𝜂

𝜕

𝜕𝜂
(𝜂

𝜕𝑊

𝜕𝜂
) + 

1

𝜂2

𝜕2𝑊

𝜕𝜃2
+ (𝑅𝑎. 𝜙) + 1 = 0 

(20) 

 1

𝜂

𝜕

𝜕𝜂
(𝜂

𝜕𝜙

𝜕𝜂
) +  

1

𝜂2

𝜕2𝜙

𝜕𝜃2
− 𝑊 = 0 

(21) 

The boundary conditions are W=0 and 𝜙=0 on the walls and the fins. The axial temperature gradient can be estimated based on the heat 
flux input as, 

 𝜕𝑇

𝜕𝑧
=  

𝑄′′

𝜌𝐶𝑃𝑤𝑚

       
(22) 

The differential equation and its boundary conditions are discretised using the finite difference method and the equations are solved 

iteratively for W and 𝜙 until a converged solution is obtained. Once the velocity profile is known, its gradient at the boundaries can be 

used to evaluate the wall shear stress and friction coefficient. The gradient of the non-dimensionalized temperature can be used to 

evaluate the Nusselt number. 

Mixed convection heat transfer about spheres[5]- 

At large values of Reynolds and Grashof numbers this study has been carried which includes entire regime of mixed convection, with 

both aiding and opposing flow. In the analysis, the conservation equations of the boundary layer are transformed such that they can lend 

themselves to either Local non-similarity or finite-difference solutions. Very efficient and accurate finite-difference method has been 

employed for solving the system of transformed equation.  Numerical solutions were carried out and results obtained for gases having a 

Prandtl number of 0.7, for both aiding and opposing flows. For the aiding flow, the solutions encompassed the range of buoyancy 

Figure 2: Cross section of the semicircular finned duct 
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parameter Ω between 0 (pure forced convection) and ∞(pure free convection). The opposing flow solutions were for Ω between 0 and 

- 3.0. 

 

Analysis- 

Consider a sphere in undisturbed upcoming stream in opposing flow (gravity acting opposite to the forced flow direction). Radius of 

the sphere is R The surface of the sphere is maintained at a uniform temperature Tw. If, 𝑇𝑤 > 𝑇∞ then the velocity field due to 

buoyancy is aiding in the force flow, if, 𝑇𝑤 < 𝑇∞ in this case velocity vectors due to buoyancy oppose the forced flow. Let the 

coordinates be chosen such that x measures the distance along the surface of the sphere front. the lower stagnation point and t 

measures the distance normal to the surface. In case of opposing flow, direction of x changes.  

 

The starting point of the analysis are following boundary layer equations- 
𝜕(𝑟𝑢)

𝜕𝑥
+

𝜕(𝑟𝑣)

𝜕𝑦
= 0 

𝑢
𝜕(𝑢)

𝜕𝑥
+ 𝑣

𝜕(𝑣)

𝜕𝑦
= 𝑈

𝜕(𝑢)

𝜕𝑥
+ 𝑣

𝜕2(𝑢)

𝜕𝑦2
+ 𝑔𝛽(𝑇 − 𝑇∞) sin

𝑥

𝑅
= 0 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕(𝑇)

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
 

 

Boundary conditions,  

 𝑢 = 𝑣 = 0;  𝑇 = 𝑇𝑤 𝑎𝑡 𝑦 = 0 

𝑢 → 𝑢(𝑥), 𝑇 → 𝑇∞ 𝑎𝑠 𝑦 → ∞ 
The local free stream velocity U(x) in general has the expression- 

𝑈

𝑈∞

= 𝐴 (
𝑥

𝑅
) + 𝐵 (

𝑥

𝑅
)

3

+ 𝐶 (
𝑥

𝑅
)

5

+ 𝐷(
𝑥

𝑅
)7 

Where A, B, C, D are constants. 

 𝑈

𝑈∞

=
3

2 
sin

𝑥

𝑅
 

(23) 

with A = 3/2, B = -1/4, C = 1/80, D= -1/3380 etc. from sine series expansion. 

The equation need transformation from (x,y) coordinates to (𝜉, 𝜂) coordinate system. it is convenient to carry out the transformation of 

the conservation equations separately for forced-flow dominated and buoyancy-force dominated cases. The combination of the 

solutions from these two cases then encompasses the entire regime of mixed forced and free convection. 
 

Forced flow dominated case- 

 

 
𝐶𝑓(𝑅𝑒)

1

2 = 2
1

2 [(
𝑈

𝑈∞

)2/(𝜉)
1

2] 𝜃′(𝜉), 0) 

 

(24) 

 𝐶𝑓(𝐺𝑟)
1

4 = Ω
1

4𝐶𝑓(𝑅𝑒)
1

2 

 

(25) 

 
𝑁𝑢𝑅𝑒−

1 

2 = − [(
𝑈

𝑈∞

)/(2𝜉)
1

2] 𝜃′(𝜉), 0 

 

(26) 

 𝑁𝑢𝐺𝑟−
1

4 = 𝑁𝑢𝑅𝑒−
1

2/Ω
1

4 
 

(27) 

  

For buoyancy dominated case- 

When the buoyancy induced flow dominates over the forced convective flow, one examines the effects of the latter on the former. It 

is, therefore, appropriate to transform the conservation equations following the pattern that is used for pure free convection. In this 

connection, one employs the transformation variables. 

𝑋 =
𝑥

𝑅
, 𝑌 =

𝑦

𝑟
|𝐺𝑟1/4| 

along with the reduced stream function F(X, Y) and the dimensionless temperature 𝜃(X, Y): 
 

𝐹(𝑋, 𝑌) =
𝜓(𝑥, 𝑦)

𝑋|𝐺𝑟|
1

4

, ∅(𝑥, 𝑦) =
𝑇(𝑥, 𝑦) − 𝑇∞

𝑇𝑤 − 𝑇∞

 

Figure 3 Sphere for analysis 
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 𝐶𝑓(𝑅𝑒)
1

2 = 2𝑋𝐹′′(𝑥, 0)/Ω
3

4 

 

(28) 

 𝐶𝑓(𝐺𝑟)
1

4 = 𝐶𝑓(𝑅𝑒)
1

2/Ω
1

4 

 

(29) 

 𝑁𝑢𝑅𝑒−
1 

2 = −𝜃′(𝑥, 0)/Ω
1

4 

 

(30) 

 𝑁𝑢𝐺𝑟−
1

4 = −𝜃′(𝑥, 0) 

 

(31) 

In the numerical computations, which covered 0 ≤ Ω ≤ ∞(i.e.) for values ranging from pure forced convection to pure free 

convection), were used for0 ≤ Ω ≤ 10 and equations for1 ≤ Ω ≤ ∞It was verified that the two sets of equations yielded the same 

results. 

IV. RESULTS AND DISCUSSION 

Vertical channel mixed convection- 

Asymmetric Heating (RT = 1) 

When 
𝜕𝑃

𝜕𝑋
 is negative, the velocity field, Reynolds number, Ξ and ε are positive. The flow is upward. The temperature and velocity 

profiles are functions of both Ξ and ε. Even though ε is directly related to Ξ, ε signifies the viscous dissipation and Ξ signifies the effect 

of buoyance force on the flow. Figures(2) and (3) show the velocity and temperature profile when Ξ = 100 and Ξ = 500 respectively. 

The graphs are plotted for 3 different values of ε (0, 8 and 12). Increase in Ξ at a given ε signifies an increase in buoyance force for a 

given viscous dissipation. As ε increases, viscous dissipation increases, increasing the temperature at every point in the profile. As the 

temperature increases, the fluid gets lighter, increasing buoyance force which accelerates the flow velocity at every point in the profile. 
This acceleration is not uniform since the heating is asymmetric. The fluid closer to the hot wall (y=1/4) is accelerated more than the 

fluid at the cold wall (y=-1/4). As the buoyance effects become more significant, the non-uniformity in the velocity profile increases. 

Beyond a certain value of Ξ, the velocity near the hot wall rises to an extent that the flow has to reverse near the cold wall to main a 

constant mass flow rate. This can be seen in figure(4) where Ξ has crossed the critical limit and the flow has reversed at the cold wall 
for ε=0(and 8). Viscosity has the effect of diffusing out the momentum and prevents flow reversal. As can be seen in figure(3), for ε=12, 

the flow reversal is not present at the cold wall.  

Figure 4 and 5 show the velocity and temperature profiles for downward flow. For downward flow, Ξ and ε are negative due to the 

negative value of Uo. The variations are plotted for the same set of  Ξ and ε as was plotted for upward flow. Since the flow is downwards, 

the increase in dissipation tends which increases the buoyance force tends to oppose the downward flow. This deceleration is more 

predominant near the hot wall due to its higher wall temperature.  Beyond a certain negative value of Ξ, the flow reversal occurs at the 

hot wall as shown in figure(5). Comparison between the profiles of upward and downward flow shows that the upward flow is more 

significantly affected by viscous dissipation that downward flow. 

Symmetric Heating (RT = 0) 

In the case of symmetric heating, the velocity and temperature profiles are symmetric. The effect of viscous dissipation is to increase 
the fluid temperature, which increases the buoyance force which accelerates the velocity in case of upward flow and decelerates in case 

Figure 4: Velocity and Temperature profile for 𝛯 = 100 Figure 5: Velocity and Temperature profile for 𝛯 = 500 
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of downward flow. Due to symmetric heating (RT = 0), the effect on Ξ on the velocity profile vanishes as the Ξ always come coupled 

with RT in the solution of perturbation series. Thus the velocity becomes on a function of ε. From equation(8), θ Ξ also becomes a 

function of ε only. The velocity and temperature profiles are shown in figure 6) and figure(7) respectively.  

Even in the case of symmetric heating, beyond a certain Ξ, buoyance forces can reverse the flow at the walls. This can lead to the creation 
of local maxima/minima of velocity near the walls and a dip/rise in the velocity in the core region respectively to maintain a constant 

mass flow rate. This characteristic is examined in the next section of heat transfer in a finned semicircular duct. 

 

Mixed convection in a finned semi-circular duct- 

The velocity and temperature profiles at different Rayleigh numbers for the for a 3 finned semi-circular duct with a fin length of 0.6R 

is shown in figure(10) and (11) respectively. The profiles are plotted for an angle of 67.5o along the radial direction. 2 peaks and a valley 

is observed in the velocity profile for Ra<104 beyond which multiple peaks and valleys start appearing in the profile. 

Figure 6: Symmetric heating velocity profile Figure 7: Symmetric heating temperature profile 

Figure 8: Velocity and Temperature profile for 𝛯 = −100 
Figure 9: Velocity and Temperature profile for 𝛯 = −500 
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The fluid near the walls is heated and accelerated by a buoyance force. This increase in fluid velocity near the walls has to be 

compensated by a reduction in the fluid velocity near the core to maintain the flow rate. This leads to a profile with local maxima near 

the walls and local minima near the core. As the Rayleigh number increases, the effects of buoyancy becomes more significant and thus 

the velocity profile becomes more distorted. The temperature profile also shows a similar dip near the core and a local maximum near 

the wall which are not much altered by a higher Rayleigh number.  

As the Rayleigh number increases, both the temperature and the velocity profiles get steeper at the walls, increasing the friction 

coefficient and the Nusselt number. Thus the heat transfer rate is significantly increased by the effect of buoyance forces (natural 

convection). These changes are quite a visile for Ra>103. The variation of Nusselt number with Rayleigh number is better illustrated in 

figure(12) and figure(13). Nusselt number, in this case, is normalised with the Nusselt number for forced convection (Ra=0).  

Figure(12) and (13) also illustrate the effects of fin dimensions and number of fins on the Nusselt number ratio (
Nu

Nuo

) . The pattern does 

not seem to be monotonous. However, it can be inferred that, up to a critical limit on the number of fins and fin dimensions, the Nusselt 

number ratio is found to decrease with increase in the number of fins and fin dimension. 

 

 

For mixed convection about sphere- 

 
Numerical results were obtained for gases having a Prandtl number of 0.7.  For aiding and opposite flow both local wall shear stress 

local surface heat transfer rate and temperature, velocity distribution has been included in the results. Since no experimental data is 

available,One of these is the potential flow solution given by equation (23) and measurements as given by equation (22) with A = 1.5, 

B = -0.4371, C = 0.1481 and D=-0.0423. Thus, the results to be presented will terminate at  ∅= 90°. Figure (14) illustrates the angular 

distributions of the local wall shear stress for the two local free stream velocity distributions. It can be analysed from the figure (14) 

that Cf increases with increasing buoyancy force in the case of Gr/Re2>0. This is because of the aiding flow situation. On the other 
hand, in the case of Gr/Re2>0 opposite type of flow case Cf decreases with increasing buoyancy force. As a result flow separation 

occurs earlier as it reaches the stagnation point. 

Figure 10: Velocity profile of semicircular duct Figure 11: Temperature profile of the semicircular duct 

Figure 12: 
𝑁𝑢

𝑁𝑢𝑜
 vs Ra for different number of fins 

Figure 13: 
𝑁𝑢

𝑁𝑢𝑜
 vs Ra for different fin lengths 
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Figure (15) shows angular distribution of Nusselt number at Pr=0.7. value of Nusselt number increases so that the local heat transfer 

rate as the angle increases in case of aiding flow situation. But opposite trend has been observed in case of opposite flow situation. 

The relative changes in the local Nusselt number Nu/Nu0 where Nu0 is Nusselt number at stagnation point.  From figure (16) it is clear 

that for very low to somewhat moderate buoyancy forces the Nusselt number strongly depend on the angle which is due to domination 

of the forced convection. Figure (17) provides a better understanding of local heat transfer for combined free and force convection 

(aiding flow) by providing the effect of buoyancy on local Nusselt number at three angular position 0°, 60°, 90° respectively.  The 

asymptotes at the stagnation point (i.e. ∅ = 0°) for pure forced convection (Gr/Re2 = 0) and pure free convection (Gr/Re2 = ∞).  

  
 

 

𝑁𝑢𝑅𝑒−
1

2 = 0.8149, 𝑁𝑢𝑅𝑒−
1

2 = 0.4576Ω
1

4 

It should be noted that the curve for the case of  ( ∅ = 90°) with local free stream velocity distribution from measurements starts from 

Gr/Re2 = 2. This is because the flow has already separated at (∅< 90°) for Gr/Re2 < 2. 

 

Figure 14 Angular distribution of local friction 
factor 

Figure 15 Angular distribution of Nusselt number for 
Pr=0.7 

Figure 16 Relative angular dependence of Nusselt number for 
Pr=0.7 

Figure 17 Heat transfer results at representative angular positions 
for Pr=0.7 
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V. CONCLUSION 

The results show that there is a considerable enhancement in heat transfer rate due to the effect of buoyance forces, especially at high 
Rayleigh number (above 103). Thus neglecting the effect of body forces in the estimation of heat transfer rate in forced convection for 

high Rayleigh numbers leads to inaccurate results. In the mixed convection analysis, the temperature-velocity profiles and the heat 

transfer rate is dependent on viscous dissipation, pressure gradient and buoyance forces. The effect of viscosity becomes quite significant 

for high viscosity fluids and high speed flows. However, under certain conditions (like that a fin heat transfer), its effect can be neglected 

because its magnitude is negligible when compared to the heat convected by the fin surface. 

In the case of flow past sphere, local friction coefficient increases with increasing buoyancy force in the case of Gr/Re2>0. 

This is because of the aiding flow situation. On the other hand, in the case of Gr/Re2>0 opposite type of flow case Cf decreases with 

increasing buoyancy force. As a result, flow separation occurs earlier as it reaches the stagnation point. Value of Nusselt number 

increases (also the local heat transfer rate) as the angle increases in case of aiding flow situation and opposite trend has been observed 

in case of opposite flow situation. Gases having Pr=0.7 has significant buoyancy effect on pure convection are encountered for Gr/Re 

> 1.67 for aiding flow situation and Gr/re < -1.33 for opposing flow situation. For both aiding and opposing flow, the local wall shear 

and local Nusselt number results exhibit a strong dependence on the variation of free stream velocity for small to moderate buoyancy 
forces. 
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